Университет «Сириус»

Новости

Максим Никитин: если я создам лекарство, которое будет лечить людей, я прожил не зря

21 декабря

Нанороботы пока еще воспринимаются чем-то из области фантастики, но на самом деле ученые уже сегодня создают их для борьбы с различными заболеваниями. Один из таких – Максим Никитин, руководитель направления «Нанобиомедицина» в Университете «Сириус» и создатель собственной компании Abisense – резидента Инновационного научно-технологического центра «Сириус» для разработки передового высокотехнологичного научного оборудования. Максим Никитин работает над созданием наноробота, который должен работать в нашем организме и уничтожать раковые клетки.

Ученый «Сириуса» рассказал журналистам, почему главная проблема человечества — это не политическая разобщенность, а антибиотикорезистентные бактерии и над чем еще сегодня работают ученые, и он в частности, по всему миру.

Что такое нанороботы и как это работает?

— Все очень любят это слово, оно немножко ненаучное, его любят фантасты, любят СМИ и так далее, мы все-таки используем чуть другие выражения. А то, что делаем мы, и то, что действительно уникально, что никто, кроме нас, не умеет делать, — это нанокомпьютеры. То есть к чему мы стремимся? Наша задача попасть лекарством точно в опухоль, чтобы действительно удалять опухолевые клетки, но не влиять никоим образом на здоровые ткани. К сожалению, это очень сложно. Большая часть видов рака такая, что невозможно отделить какую-то конкретную одну молекулу, которая бы четко идентифицировала — вот это больная клетка, а вот это здоровая клетка. Но все современные лекарства распознают только одну молекулу. То есть это может быть маленькая химиотерапевтическая молекула, может быть моноклональное антитело, что является на данный момент самым передовым вариантом лечения. И они все распознают один рецептор на наших клетках.

Для того чтобы точно идентифицировать клетку, нам нужен компьютер. Обычный электронный компьютер анализирует напряжение на наших транзисторах: единичка — это есть напряжение, нолик — нет напряжения или тока. А у нас нанокомпьютеры, только биологически-молекулярные нанокомпьютеры. Они анализируют, если есть присутствие, какая-то молекула, какой-то маркер заболевания — это единичка, отсутствует — нолик.

То есть это чип запускается в организм?

— Чипы — это очень-очень далеко от того, что умеет сейчас человечество. То есть мы действительно запускаем в организм животных нанокомпьютеры, но это очень еще простые и мало чего умеющие сущности. Но они действительно умеют анализировать параметры. Если легкий пример привести, который многим будет понятен: нам нужно лекарство сделать, которое будет активно, только когда высокий уровень глюкозы и одновременно малый уровень инсулина, то есть 1:0. В этом случае нужно атаковать какую-то клетку, заставить ее продуцировать инсулин, но как только уровень инсулина повышается или глюкоза падает, нужно инактивироваться. Вот такой нанокомпьютер должен лечить диабет.

То, что вы делаете, то, что попадает в кровь, бродит по организму в поисках, содержит электричество или вообще без него?

— Нет, вообще без электричества. Я изначально, где-то в десятом классе, очень увлекался программированием, думал стать программистом и как раз хотел заняться такой областью — наноэлектромеханические системы. Мне казалось, что можно сделать робота из шестеренок с передачей каких-то сигналов и запускать его в кровоток. Проблема в том, что это нереально, это невозможно. Наши капилляры — это 700 нанометров, то есть в 100 раз тоньше человеческого волоса, и если мы будем запускать что-то более крупное, то вызовется просто эмболия сосудов, возникнет тромб, и ничего хорошего не будет, никакой терапии, это будет очень опасное состояние.

То есть этот компьютер чисто биохимический?

— Да, чисто химический. Это простые кристаллы с полимерами, которые молекулярными взаимодействиями могут претерпевать разные изменения, они распадаются, собираются, но это очень-очень пока простые системы.

Получается, нигде в мире такого уровня препараты пока не созданы. Но вы, наверное, не единственный в мире, кто этим занимается?

— Концепция, которую мы разработали, технология создания таких компьютеров уникальна по функциональности. У нас есть, по сути, только один конкурент — это коллаборация Гарварда и Бар-Иланского университета в Израиле. Они умеют считать столь же сложно, как и мы, но они доставляют только очень-очень маленькие частицы из ДНК. Им удалось продемонстрировать их работоспособность в таракане. Вы спросите, почему в таракане, а не в мышах? У них система не позволяет доставить реальные, настоящие лекарства.

А вам уже это удается?

— Мы можем это сделать на любой наночастице. У нас все хорошо на клеточных культурах и так далее, но у нас все работает и на более сложных организмах, но еще не опубликовано. В научном мире считается, что пока не опубликовано, значит, не работает.

То, чем вы занимаетесь сейчас, — это фундаментальная наука? Это формирование какого-то принципа, как это будет работать? Или это нечто, что должно непосредственно продуцироваться уже в коммерческом изделии?

— То, что я сказал про нанокомпьютеры, — это действительно пока фундаментальная наука, то есть мы придумали транзистор, осталось сделать iPhone.

Ваше открытие должно быть доказано именно на человеческом материале или чуть раньше оно будет признано как работающий принцип?

Признано оно уже сейчас, потому что есть публикации, но, по сути, все признают, что да, это действительно что-то полезное, только когда пройдут клинические испытания. Клинические испытания — это обычно долго, порядка 15 лет.

Как перейти от теоретических или фундаментальных экспериментов к практическим по всем стадиям, от животных к доклиническим, первым клиническим исследованиям? Кто заплатит и организует все это? Кто у нас это может сделать?

— Это, безусловно, сложный, наверное, самый сложный вопрос, который мы сами пытаемся сейчас активно решать. То есть у нас есть, допустим, другая технология, которая абсолютно революционна с точки зрения всей наномедицины. То есть те роботы, о которых я рассказал, — это одна часть, но параллельно еще много людей разрабатывают разные терапевтические препараты. У всех у них большая проблема в том, что иммунная система очень быстро выхватывала их из кровотока. То есть когда их вводили, 90% дозы вообще ни разу не проходило через опухоль, потому что иммунитет очень сильно работает. И мы придумали классную идею: давайте обхитрим иммунную систему, попросим переработать эритроцитов в три раза больше, чем она делает каждый день. Эритроциты, которые непрерывно в нас плавают, потихоньку портятся. В среднем эритроцит живет 100 дней, и каждый день организм перерабатывает 1% эритроцитов. Мы сказали: а давайте мы введем специфическое антитело, которое заставит иммунитет вывести 3% эритроцитов за сегодня. Что происходит? Иммунитет наедается, и когда вводят терапевтические наночастицы, они успевают проскочить.

А это не опасно с точки зрения падения иммунитета?

Нет, это очень интересная история, мы это очень подробно изучили, это намного мягче, чем любая химиотерапия и так далее. Там несравнимые порядки опасности. Конечно, это не надо использовать для лечения гриппа, но с точки зрения онкозаболеваний это очень интересная технология. Так вот с ней мы уже сейчас готовы выходить на клинические испытания. И мы сейчас ищем как раз хорошего партнера, кто отважится вводить столь инновационную технологию на рынок. В России за последнее время очень хорошо научились делать те лекарства, по которым технологический процесс понятен. То есть малые молекулы у нас очень хорошо умеют делать. Теперь остается этап, когда нужно настроить и освоить то, как выводить принципиально новые типы лекарств и методов лечения. Вот это пока мы не очень хорошо умеем делать, но я думаю, что в ближайшее время все вместе как-то научимся.

На каком этапе вы сейчас находитесь?

— Пока мы занимаемся разработкой лекарства, это то, вообще почему я стал ученым. Я для себя формулирую это как? Если я создам лекарство, которое выйдет в клинику и будет лечить людей, я прожил не зря. К этому я стремлюсь. Но после этого выйдет и бизнес-сторона, с поиском и отбором инвесторов.

Кто же сейчас обеспечивает вот весь этот научный процесс материально?

— Основная масса финансирования от Российского научного фонда (РНФ), от Министерства образования и науки, то есть различные госзадания, различные гранты. Это большое финансирование. А отдельно мы занимаемся, я основал компанию, где мы разрабатываем научные приборы, реагентику, финансирование у нас от покупателей.

То, что вы делаете, называется «наноробот» в том смысле, что частицы именно наноразмера, не микроскопического, а нано, так что они даже через капилляры будут свободно перемещаться. Для этого нужно создавать какие-то сложнейшие технологии. Неужели все это мы можем прямо импортозаместить хотя бы в малых количествах, чтобы вы все это продолжали?

— В целом я бы сказал так, что биологам сейчас проще, чем физикам. Тут надо сказать, что физика очень долго развивалась в XX веке, была сделана очень мощная микроэлектронная база, которая требует не то чтобы институтов, а гигантских супермощных заводов, там тысячи сотрудников. В биологии все проще, все технологии очень сложные, но в биологии все развитие еще на том уровне, когда в целом один человек может объять в своем мозгу всю технологию от начала до конца.

А физически у него есть средства? Это же не в пробирке выращивается наночастица. Она вообще физическая?

— Нет, она химическая. Наночастицу мы растим из кристалла, то есть из солей железа, допустим, мы получаем магнитные наночастицы. Простейшая базовая реакция, которую многие видели на уроках химии, — FeCl3, FeCl2 и щелочь добавляем, выпал осадок, подогрели, и магнит притягивает. Это азы, они очень простые, дальше надо долго синтезировать очень много различных наноматериалов, чтобы понять, как сделать очень хорошо действующую частицу. Это стандартная фраза — 80% усилий дают 20% результата. А в биологии базу сделать очень легко, а вот эти 5%, которые переводят частицу в самую эффективную, которую можно вводить в человека, — это надо 10-20 лет жизни быть профессионалом в области. В биологии что действительно безумно сложно по сравнению с физикой — так это масштабирование. Мы можем сделать самую крутую, умную частицу в лаборатории, но потом придумать технологический процесс, как его произвести в многотонном производстве, — это нерешаемая задача в очень многих случаях.

Глядя вперед, допустим, вы в лабораторных условиях сможете получить то, о чем мечтаете, а потом начнется следующий этап. А как это начать делать в большем количестве? Вы об этом этапе думаете сейчас? Или сначала надо получить то, что вы масштабируете?

— Почему я пошел заниматься приборостроением? Потому что для масштабирования часто нужно новые приборы делать, реакторы и так далее, которые будут это синтезировать так, как никто раньше не делал, и это часть задачи. Поэтому мне интересно попытаться объединить все от FeCl3, FeCl2 до создания частицы, до испытания на клетках, животных и на тех приборах, которые потом это будут исследовать, масштабировать.

А нет такого, что сейчас наше научное сообщество будет в какой-то степени отрезано от последних разработок, которые производят в мире и которыми мировое научное сообщество обменивается друг с другом?

—  Это то, о чем мы должны как-то думать, придумывать, как с этим взаимодействовать и как это решать. Тут я думаю, что все равно большая часть ученых, конкретных людей, не институтов, а ученых именно, это те люди, которые идут в науку в основном ради цивилизации, то есть ради того, чтобы мы как вид, как что-то высокое, созданное природой ради чего-то высшего, развивались и решали те проблемы, которые перед нами возникают в целом как у вида. Мне кажется, многие из них строго за то, чтобы международное общение, международная коллаборация в области науки сохранялась.

Я правильно понимаю, что, пока речь идет о фундаментальной науке, пока вы сам принцип разрабатываете, это всегда было достоянием всего мира, это не прятали. А прятать начинают, когда надо промышленную технологию разработать?

—  Да, вот тут могут действительно быть проблемы. Но ведь им тоже нужно друг с другом обмениваться идеями, все друг на друга влияют так или иначе, это и есть обмен фундаментальной информацией. Ну, невозможно всех ученых мира засунуть по банкам и сказать, что работайте каждый в своей банке, потому что мы сильно затормозимся. Меня очень беспокоит, что тогда антибиотикорезистентные бактерии нас обыграют гораздо быстрее. Мы много и часто обсуждаем, что какие там лекарства, какие изобретения вообще помогли человечеству. Я, может быть, не так энциклопедически развит, чтобы знать все, но я бы сказал, что изобретение антибиотиков Флемингом в числе главных. Причем это же случайность была, когда человек заметил и придал значение случайному событию, чтобы увеличить время жизни всего человечества на 20 лет. Таких примеров мало, и я как человек, который будет через некоторое время все равно ходить лечиться в клиники, переживаю из-за антибиотикорезистентности. Антибиотики становятся все дороже и дороже, антибиотикорезистентных бактерий становится больше, и есть шанс, что мы очень близко к тому, чтобы здоровье человечества сократилось на 20 лет. А с учетом общего растущего населения Земли это может быть действительно гигантской проблемой, которая очень резко повлияет на развитие всей планеты. Вот это наша проблема, а не все остальное, вот об этом нам нужно всем вместе думать, как бороться, как придумать новый антибиотик принципиально нового типа. И, в частности, над этим мы работаем в Университете «Сириус».

 

Источник.