РУКОВОДИТЕЛЬ

Анатолий Сергеевич Ненашев
Кандидат физико-математических наук, исполнительный директор Научного центра информационных технологий и искусственного интеллекта Научно-технологического университета «Сириус»
Научная специальность 1.2.2
Образовательная программа направлена на подготовку высококвалифицированных специалистов – исследователей и преподавателей, обладающих разноплановыми компетенциями в области фундаментальной математики, современной прикладной математики в биоинформатике, робототехнике и др.
Первостепенное значение научно-исследовательской деятельности по научной специальности «Математическое моделирование, численные методы и комплексы программ» определяется активным развитием цифровой экономики и цифровизацией многих сфер жизни, включая медицину, образование, транспорт и даже культуру.
Программа реализуется на базе Научного центра информационных технологий и искусственного интеллекта.
Количество мест: 6
Форма обучения: очная
Срок обучения: 3 года
Что отличает Университет «Сириус»?
- Возможность для всех аспирантов трудоустройства на должность младшего научного сотрудника с оплатой до 80 000 рублей
- Наши аспиранты живут в гостиницах Олимпийской деревни.
- Руководители научных направлений – ученые с мировым именем, профессора европейских университетов.
- Возможность трудоустройства в ведущих компаниях страны.
- Доступ к лабораториям с высокотехнологичным оборудованием.
- Темы научных исследований
- Как поступить
- Вступительные испытания
1) «О степени перебалансировки стратегий алгоритмического арбитража»
Для распространенной на практике операции замедления (decay) алгоритмической стратегии построить математическую модель и в рамках нее доказать наблюдаемые свойства (уменьшение степени перебалансировки (turnover) стратегии). Исследовать степень перебалансировки стратегии относительно линейных преобразований. Предложить и протестировать нелинейные операции замедления стратегии.
Научный руководитель: Игорь Николаевич Шнурников – кандидат физико-математических наук, профессор направления «Финансовая математика и финансовые технологии» Научного центра информационных технологий и искусственного интеллекта Научно-технологического университета «Сириус».
2) «Задачи и методы управления рисками в финансовой математике»
Решается задача построения мер риска на основе копулярного подхода для инвестиционных портфелей. Задача формулируется для многомерных финансовых временных рядов с учетом динамического изменения нелинейных взаимосвязей между переменными. Предлагается использовать стохастические авторегрессионные модели для различных копул (Франка, Плакетта, Клейтона, Гумбеля, Гаусса и Стьюдента).
Научный руководитель: Михаил Евгеньевич Семенов – кандидат физико-математических наук, научный руководитель направления «Финансовая математика и финансовые технологии» Научного центра информационных технологий и искусственного интеллекта Научно-технологического университета «Сириус».
3) «Задачи и методы оптимального стохастического управления в финансовой математике»
Решается задача оптимального стохастического управления рисками портфелей опционов в условиях воздействия множественных риск-факторов. Задача формулируется в виде нелинейного уравнения в частных производных (уравнение Гамильтона-Якоби-Беллмана), которое сводится к решению некоторой вероятностной задачи, для которой, в свою очередь, применяются эффективные современные методы машинного обучения. Решение реализуется в виде программного комплекса, предназначенного для эффективного управления опционными портфелями в российских инвестиционных банках.
Научный руководитель: Яна Исаевна Белопольская – доктор физико-математических наук, профессор направления «Финансовая математика и финансовые технологии» Научного центра информационных технологий и искусственного интеллекта Научно-технологического университета «Сириус».
4) «Разработка алгоритмов и программных пайплайнов для функциональной аннотации транскриптомных и геномных данных»
В настоящее время получен колоссальный объем различных типов геномных данных, включая сборки полных геномов и транскриптомов, для большого числа немодельных организмов. Предлагаемый проект ориентирован на разработку алгоритмов и программных пайплайнов для поточной функциональной аннотации таких массивов на основе референсных баз данных и структурных особенностей нуклеотидных последовательностей. В последнем случае особый интерес сегодня представляют модели поиска локализации и структуры новых генов. Предполагается использование подходов ML и AI, их тестирование и оптимизация.
Научный руководитель: Кирилл Андреевич Винников – российский учёный в области морской биологии и экологии, директор Института Мирового океана Дальневосточного федерального университета, PhD по биологии, профессор Научно-технологического университета «Сириус», направление «Вычислительная биология», научная сфера: ихтиология, морская экология, молекулярная биология, биоинформатика, биогеография.
5) «Разработка алгоритмов и программных пайплайнов для поиска функциональных сигналов отбора в геномных данных»
Большой объем различных типов геномных данных позволяет производить сравнительный анализ большого числа нуклеотидных последовательностей с целью выявления геномных участков, находящихся под действием отбора. Данный проект направлен на разработку алгоритмов и программных пайплайнов для автоматизации поиска таких участков или отдельных нуклеотидных сайтов, как при подходе сравнения нескольких биологическими таксонов, так и при анализе флуктуаций скоростей нуклеотидных замен внутри одного вида. Будут рассмотрены модели поиска сигналов направленного, балансирующего и дизруптивного отбора в геномах немодельных видов.
Научный руководитель: Кирилл Андреевич Винников – российский учёный в области морской биологии и экологии, директор Института Мирового океана Дальневосточного федерального университета, PhD по биологии, профессор Научно-технологического университета «Сириус», направление «Вычислительная биология», научная сфера: ихтиология, морская экология, молекулярная биология, биоинформатика, биогеография.
6) «Разработка алгоритмов для предсказания границ экзонов в транскриптомных данных»
В процессе структурной аннотации транскриптомных данных большое значение имеет понимание границ кодирующих экзонных участков. Особенно важно знать последовательности экзонов в транскриптах при проектировании гибридизационных зондов, которые затем применяются в экспериментальных работах по выемке полных экзомов («exome capture») у немодельных организмов. Обычным подходом для предсказания границ экзонов в таких случаях является использование референсных геномных аннотаций. Альтернативные подходы de novo предсказания координат экзонов в транскриптах без использования референса пока не дают результатов, пригодных для внедрения в экспериментальную практику. Именно разработке и тестированию алгоритмов de novo предсказания границ экзонов с использованием методов ML и AI предлагается будет посвящен настоящий проект.
Научный руководитель: Кирилл Андреевич Винников – российский учёный в области морской биологии и экологии, директор Института Мирового океана Дальневосточного федерального университета, PhD по биологии, профессор Научно-технологического университета «Сириус», направление «Вычислительная биология», научная сфера: ихтиология, морская экология, молекулярная биология, биоинформатика, биогеография.
7) «Компьютерная разработка диагностических агентов для визуализации амилоидных структур»
Для визуализации амилоидных структур в человеческом мозге методом магнитно-резонансной томографии на ядрах 19F могут быть использованы фторсодержащие соединения, связывающиеся с амилоидными фибриллам. Проект направлен на исследование взаимодействий таких молекул с фибриллами методами компьютерного моделирования и разработку новых потенциальных диагностических агентов, обладающих высоким сродством к агрегатам бета-амилоида, низкой токсичностью, достаточной проницаемостью гематоэнцефалического барьера.
Научный руководитель: Игорь Алексеевич Седов – доктор химических наук, направление «Вычислительная биология» Научно-технологического университета «Сириус», научные интересы: физическая химия, биофизическая химия, компьютерное моделирование, химическая термодинамика.
8) «Разработка и реализация ML потенциалов для молекулярной динамики материалов и белков»
Молекулярная динамика и её производные мощный инструмент для исследования молекулярных механизмов в белках и ферментах. Использование силовых полей в моделировании позволяет иметь высокую производительность счёта, но не позволяет исследовать ферментативные реакции. Существующие подходы для преодоления этого ограничения используют методы квантовой химии, что значительно уменьшает производительность расчётов. Перспективной заменой квантовой химии являются потенциалы на основе моделей ML (QML), они позволяют получить желаемую производительность при сохранении точности расчётов. Работа будет посвящена разработке моделей и инструментов для применения QML в структурной биологии и науках о материалах.
Научный руководитель: Андрей Викторович Головин – доктор химических наук, ведущий научный сотрудник Научно-технологического университета «Сириус», направление «Вычислительная биология» Научного центра информационных технологий и искусственного интеллекта, научные интересы: химия и компьютерное моделирование биоструктур, в частности коротких последовательностей ДНК и РНК, биосенсоры.
9) «Разработка эффективного подхода к локальному дизайну белков на основе AlphaFold и TRRosetta»
Успехи методов ML для предсказания структур белков потрясли область структурной биологии в последние 2 года, стали появляться подходы к использованию этих моделей для дизайна новых белков и ферментов. Трудность дизайна состоит в необходимости поиска целевой структуры в пространстве последовательностей, которое астрономически велико. В проекте предполагается разработка методов ML для эффективного исследования пространства последовательностей при заданных ограничениях.
Научный руководитель: Андрей Викторович Головин – доктор химических наук, ведущий научный сотрудник Научно-технологического университета «Сириус», направление «Вычислительная биология» Научного центра информационных технологий и искусственного интеллекта, научные интересы: химия и компьютерное моделирование биоструктур, в частности коротких последовательностей ДНК и РНК, биосенсоры.
10) «Рациональный дизайн терапевтических пептидов с искусственными аминокислотами»
Лекарственные препараты на основе пептидов и белков уверено захватывают фармацевтический рынок, не удобной особенностью таких препаратов является ограниченное время жизни в организме. Введение неприродных аминокислот в белки и пептиды позволяет преодолеть эту проблему. В проекте предполагается использование методов молекулярного моделирования для эффективного проектирования новых препаратов на основе белков и пептидов с неприродными аминокислотами.
Научный руководитель: Андрей Викторович Головин – доктор химических наук, ведущий научный сотрудник Научно-технологического университета «Сириус», направление «Вычислительная биология» Научного центра информационных технологий и искусственного интеллекта, научные интересы: химия и компьютерное моделирование биоструктур, в частности коротких последовательностей ДНК и РНК, биосенсоры.
11) «Изучение динамики функционирования скелетных мышц человека на уровне метаболизма, сигнальных путей и регуляции экспрессии генов в ответ на различные разновидности физиологических стрессов (ишемия, гипоксия, физическое упражнение)»
Скелетные мышцы составляют около 40 % от массы тела взрослого человека и вносят существенный вклад в регуляцию метаболизма на уровне всего организма. Регулярные низкоинтенсивные упражнения (аэробные или выносливостные тренировки) оказывают значимое влияние на скелетные мышцы: выражено увеличивают капиллярную и митохондриальную плотность – показатели, влияющие на транспорт O2 и CO2, на обмен метаболитов между кровью и мышцей, а также на процессы окислительного фосфорилирования. Эти функциональные изменения приводят к улучшению аэробной работоспособности на уровне скелетных мышц и организма, а также к снижению факторов риска развития сердечно-сосудистых и метаболических заболеваний. Адаптация клеток скелетных мышц к стрессовым условиям, в том числе, к регулярным аэробным физическим нагрузкам обеспечивается существенными метаболическими изменениями, активацией в них сигнальных путей вовремя и после каждого упражнения, приводящей к изменению экспрессии огромного количества генов. Несмотря на существующие попытки экспериментально исследовать механизмы регуляции и передачи сигналов при адаптации мышечных клеток к стрессовым условиям, к настоящему времени данные, полученные на скелетных мышцах человека in vivo, представляют собой усредненные количественные показатели содержания основных метаболитов и энергетических молекул; а также количественный вклад отдельных сигнальных молекул в регуляцию экспрессии генов внутриклеточного ответа до сих пор полностью не исследован. В рамках диссертационной работы будет освоен модульный подход моделирования в компьютерной системе BioUML с целью разработки и анализа интегрированной модели функционирования скелетных мышц человека, учитывающей структурно-функциональные взаимосвязи на всех трёх уровнях организации (метаболический, сигнальные пути и регуляция экспрессии генов) и между ними; проведена верификация разработанной модели к опубликованным и оригинальным экспериментальным данным.
Научный руководитель: Илья Ринатович Акбердин – кандидат биологических наук, старший научный сотрудник Научно-технологического университета «Сириус», направление «Вычислительная биология» Научного центра информационных технологий и искусственного интеллекта.
12) «Математическое моделирование процессов заражения, распределения вируса SARS-CoV-2 в организме человека с учётом формирования B- и Т-клеточных иммунных ответов»
Текущая вспышка коронавирусного заболевания 2019 г. (COVID-19) является чрезвычайной ситуацией во всем мире, поскольку ее быстрое распространение и высокий уровень смертности являются серьезной биологической угрозой. Число людей с тяжелым острым респираторным синдромом, вызванным коронавирусом 2 (SARS-CoV-2), возбудителем COVID-19, продолжает достаточно быстрыми темпами расти во всем мире и по настоящее время. У пациентов с COVID-19 может развиться пневмония, тяжелые симптомы острого респираторного дистресс-синдрома (ARDS) и полиорганная недостаточность. Тем не менее, разнообразие форм данного заболевания, в сочетании с массовым бессимптомным носительством SARS-CoV-2, требуют дальнейших исследований патогенеза этого заболевания. Более того, как уже экспериментально показано, поражение органов и тканей при заражении SARS-CoV-2 является иммуноопосредованным, а интенсивность вирусовыделения варьирует в очень широких пределах, равно как и восприимчивость к заражению, тяжесть течения инфекционного процесса и вероятность гибели. Иммуноопосредованность патологических процессов означает весьма нелинейную связь между устойчивостью к болезни и наличию реакций специфического иммунитета. В этой связи применение методов математического моделирования для изучения особенностей взаимодействия вируса с клетками хозяина с учетом иммунного ответа является крайне существенным как для фундаментального понимания патогенеза заболевания COVID-19, так и для ускорения создания целенаправленных лекарственных препаратов при его лечении. В рамках диссертационной работы будет освоен модульный подход моделирования в компьютерной системе BioUML с целью разработки и анализа модульной модели заражения, распределения вируса SARS-CoV-2 в тканях и органах человека, модульной модели иммунного ответа на различную вирусную нагрузку и в зависимости от функционального состояния организма пациента; проведена верификация разработанной модели к опубликованным и оригинальным экспериментальным данным; предсказаны потенциальные мишени в комплексной системе молекулярно-генетических взаимодействий вирус-хозяин для создания соответствующих наиболее эффективных лекарственных препаратов для лечения COVID-19.
Научный руководитель: Илья Ринатович Акбердин – кандидат биологических наук, старший научный сотрудник Научно-технологического университета «Сириус», направление «Вычислительная биология» Научного центра информационных технологий и искусственного интеллекта.
13) «Разработка и анализ потоковых моделей метаболизма животных, птиц и рыб для оптимизации процессов роста мышечной массы»
Одной из бурно развивающихся областей современной биологии, в которой развитие опережающих технологий наиболее вероятно и востребовано, является синтетическая биология – создание новых про- и эукариотических организмов с заданными свойствами на основе синтеза геномов de novo или их глубокой реорганизации с использованием подходов генной инженерии, биоинженерии, системной биологии и биоинформатики. Поскольку формирование любого фенотипического признака живых организмов обеспечивается комплексными молекулярно-генетическими процессами, требующими координированного взаимодействия сотен и даже тысяч генов, белков, микроРНК, то системно-биологический подход, включающий интеграцию омиксных данных, детальный анализ генных взаимодействий с последующими реконструкцией регуляторной сети и построением соответствующей математической модели, является многообещающим подходом к созданию рациональной стратегии для улучшения биотехнологических или целевых свойств исследуемых культур клеток и даже целых организмов. Использование методов и подходов системной биологии позволяет также предсказывать роль различных модификаций геномов на фенотипические признаки и их влияние на метаболизм клетки. В этом направлении развития системной биологии создание метаболических сетей на основе целого генома (GENRE, GEnome-scale Network REconstruction) является наиболее перспективным. В рамках диссертационной работы будет освоена технология получения биологически значимых результатов с помощью интеграции биоинформатического анализа полногеномных данных для живых систем с последующей реконструкцией либо потоковой модели, позволяющей исследовать метаболизм клетки на уровне всего генома, либо кинетической модели, предоставляющей компьютерную платформу для проведения in silico количественных экспериментов по генетическим модификациям и метаболическому инжинирингу эукариотических организмов.
Научный руководитель: Илья Ринатович Акбердин – кандидат биологических наук, старший научный сотрудник Научно-технологического университета «Сириус», направление «Вычислительная биология» Научного центра информационных технологий и искусственного интеллекта.
14) «Разработка сценариев и анализ генетических данных»
Современные технологии секвенирования (NGS) генерируют большие объемы разнообразных экспериментальных данных, которые требуют сложного биоинформатического анализа. Возможно несколько направлений работы, в зависимости от получаемых NGS данных в ходе сотрудничества в разных проектах: построение атласов промотров и энхансеров, а также моделей регуляции генов; разработка методов и сценариев анализа для одномолекулярного секвенирования ДНК; разработка сценариев анализа данных для Национальной базы генетической информации.
Научный руководитель: Федор Анатольевич Колпаков – кандидат биологических наук, старший научный сотрудник Научно-технологического университета «Сириус», направление «Вычислительная биология» Научного центра информационных технологий и искусственного интеллекта.
15) «Построение модели виртуальной клетки в норме и патологии»
Используя платформу BioUML (biouml.org) разработаны отдельные модули, связанные с регуляцией метаболизма и работой клетки (гликолиз, цикл Кребса, апоптоз и т.п.). Необходимо будет разработать новые модули, чтобы в конечном итоге, приблизиться к полной модели работы клетки.
Научный руководитель: Федор Анатольевич Колпаков – кандидат биологических наук, старший научный сотрудник Научно-технологического университета «Сириус», направление «Вычислительная биология» Научного центра информационных технологий и искусственного интеллекта.
16) «Моделирование фармакокинетики наночастиц в раковых опухолях»
Наночастицы рассматриваются как эффективный способ доставки лекарственных препаратов к раковым клеткам. В ходе работы необходимо будет построить модели распределения наночастиц по организму и раковым опухолям. В ходе работы будут использоваться экспериментальные данные, полученные в Университете Сириус.
Научный руководитель: Федор Анатольевич Колпаков – кандидат биологических наук, старший научный сотрудник Научно-технологического университета «Сириус», направление «Вычислительная биология» Научного центра информационных технологий и искусственного интеллекта.
17) «Моделирование влияния генетических вариантов на регуляцию артериального давления»
В настоящее время известно большое количество генов, ответственных за развитие артериальной гипертензии. Тем не менее эти знания никак не используются практикующими врачами для выбора терапии в силу сложного полигенного взаимодействия. В следствие этого необходимо развитие разработанной ранее математической модели сердечно-сосудистой и почечной систем человека с целью учета генетических механизмов артериальной гипертензии.
Научный руководитель: Елена Олеговна Кутумова – кандидат физико-математических наук, старший научный сотрудник Научно-технологического университета «Сириус», направление «Вычислительная биология» Научного центра информационных технологий и искусственного интеллекта.
18) «Моделирование возрастных изменений в регуляции артериального давления»
Предметом исследования в данной теме являются процессы общего и сосудистого старения, а также влияние изменений, связанных со старением клеток, на прогрессирование артериальной гипертензии. Для математического моделирования указанных процессов будет задействована созданная в предыдущих проектах математическая модель сердечно-сосудистой и почечной систем человека.
Научный руководитель: Елена Олеговна Кутумова – кандидат физико-математических наук, старший научный сотрудник Научно-технологического университета «Сириус», направление «Вычислительная биология» Научного центра информационных технологий и искусственного интеллекта.
19) «Моделирование действия антигипертензивных препаратов»
Артериальная гипертензия является многофакторным заболеванием со сложными патофизиологическими путями. Индивидуальные особенности пациентов обусловливают разную реакцию на разные классы антигипертензивных препаратов. Поэтому оценка эффективности терапии на основе прогнозов in silico является важной задачей. В текущей работе предполагается развитие ранее созданной математической модели сердечно-сосудистой и почечной систем человека с учетом уравнений, имитирующих ответ пациента на антигипертензивную терапию с различными механизмами действия, а также проведение in silico клинических исследований для данной терапии.
Научный руководитель: Елена Олеговна Кутумова – кандидат физико-математических наук, старший научный сотрудник Научно-технологического университета «Сириус», направление «Вычислительная биология» Научного центра информационных технологий и искусственного интеллекта.
20) «Передовые технологии создания моделей нефтегазовых месторождений»
Интегрированный подход к построению цифровой модели месторождений, использующий многомасштабные данные различного происхождения.
Разработка новых математических моделей и методов для оптимизации разработки месторождений.
Научный руководитель: Сергей Юрьевич Малясов – PhD, кандидат физико-математических наук, профессор Научного направления «Математическое моделирование в биомедицине и геофизике».
21) «Математические методы и вычислительные технологии моделирования процессов многофазной фильтрации на высокопроизводительных вычислительных системах»
Новые численные методы и вычислительные технологии эффективного высокопроизводительного расчета многофазных течений в пористой среде.
Научный руководитель: Юрий Викторович Василевский – доктор физико-математических наук, руководитель Научного направления «Математическое моделирование в биомедицине и геофизике».
22) «Разработка обобщённой математической модели по влиянию противодиабетических препаратов на гомеостаз глюкозы»
Проект нацелен на использование системной математической модели гомеостаза глюкозы для объяснения эффекта U-образных профилей фармакодинамики при лечении глифлозинами пациентов с диабетом первого типа, а также исследования механизмов кетоацидоза при совместном использовании глифлозинов и инсулина.
Научный руководитель: Кирилл Витальевич Песков– кандидат биологических наук, доцент Научного направления «Математическое моделирование в биомедицине и геофизике».
23) «Разработка мета-аналитических методов байесовского моделирования для анализа опубликованных данных выживаемости»
Проект включает в себя разработку программно-ориентированного комплекса в среде R statistics (пакеты brms, rstanarm, nlmixr, torsten, rstan и др.) для осуществления полноценного фармакометрического анализа с использованием алгоритмов байесовского моделирования как динамических, так и дискретных данных клинических исследований.
Научный руководитель: Кирилл Витальевич Песков – кандидат биологических наук, доцент Научного направления «Математическое моделирование в биомедицине и геофизике».
24) «Многомасштабные модели механического поведения биоматериалов»
Разработка и построение конечно-элементных моделей для описания напряженно-деформированного состояния биоматериалов с учетом их внутренней микроструктуры.
Научный руководитель: Виктория Юрьевна Саламатова – кандидат физико-математических наук, доцент Научного направления «Математическое моделирование в биомедицине и геофизике».
25) «Новые подходы к экспериментальному исследованию биоматериалов»
Экспериментальное исследование различных биоматериалов на микро- и макроуровне. Разработка новых типов экспериментов и протоколов испытаний для биоматериалов
Научный руководитель: Юрий Викторович Василевский – доктор физико-математических наук, руководитель Научного направления «Математическое моделирование в биомедицине и геофизике».
26) «Моделирование и калибровка кинематической и динамической моделей индустриального робота манипулятора»
Проект направлен на разработку алгоритмов моделирования кинематики и динамики робототехнических систем и разработку протоколов по организации экспериментов и методов обработки данных для идентификации и калибровки параметров таких моделей. Особенностью проекта является исследование подходов для моделирования и калибровки динамической модели робота не в целом, а лишь в окрестности выделенного движения системы, с последующей разработкой алгоритмов управления движением системы, используя такую улучшенную модель. Предполагается использование результатов исследования и их апробация для разработки элементов новых технологии управления движением индустриального робота манипулятора повышенной точности.
Научный руководитель: Леонид Борисович Фрейдович – PhD, кандидат физико-математических наук, доцент в университете г. Умео (Umea University, Швеция), профессор Научно-технологического университета «Сириус», направление «Математическая робототехника» Научного центра информационных технологий и искусственного интеллекта.
27) «Разработка методов анализа и управления движением механической системы (робота) с учетом сил, возникающих в контакте инструмента робота с внешней средой»
Проект направлен на разработку алгоритмов управления движением робота с учетом наличия сил, возникающих в контакте между инструментом робота и внешней средой или объектом манипулирования. Наличие контакта и сил взаимодействия в контакте в большинстве приложений являются частью сценария работы робототехнической системы и не могут быть проигнорированы. По этой причине, проект предполагает исследование задач моделирования указанных сил, возникающих при наличии распределенного контакта (пятна контакта), и использование указанных моделей при синтезе стабилизирующей обратной связи. Предполагается использование результатов исследования и их апробация для разработки элементов новых технологии управления движением индустриального робота манипулятора в задачах механообработки и при выполнении сборочных работ.
Научный руководитель: Антон Станиславович Ширяев – PhD, руководитель направления «Математическая робототехника и искусственный интеллект» Научно-технологического университета «Сириус» Научного центра информационных технологий и искусственного интеллекта.
28) «Разработка методов робастного управления движением механической системы при помощи алгоритмов теории скользящих режимов»
Проект направлен на разработку алгоритмов робастного управления движением робототехнической системы, основанные на методах теории скользящих режимов высших порядков. Предполагается, что теоретическая часть будет направлена в том числе на поиск и конструирование по номинальному вынужденному движению инвариантных многообразий низкой размерности (поверхностей скольжения), стабилизация которых влечет орбитальную устойчивость движения. Предполагается использование результатов исследования и их апробация для разработки элементов новых технологии управления движением индустриального робота манипулятора в задачах механообработки и при выполнении сборочных работ.
Научный руководитель: Леонид Моисеевич Фридман – доктор физико-математических наук, профессор направления «Математическая робототехника и искусственный интеллект» Научно-технологического университета «Сириус» Научного центра информационных технологий и искусственного интеллекта.
29) «Разработка численных методов и алгоритмов искусственного интеллекта для решения задач динамического манипулирования»
Проект направлен на разработку алгоритмов планирования и робастного управления движением робототехнической системы при наличии неудерживающего контакта, который возникает, например, при проскальзывании или перекатывании объекта по руке/инструмента робота. Предполагается, что будут предложены новые планировщики движения и библиотеки движений при решении конкретных задач динамического манипулирования. Предполагается использование результатов исследования и их апробация для разработки элементов новых технологии управления движением индустриального робота манипулятора в задачах механообработки и при выполнении сборочных работ.
Научный руководитель: Сергей Владимирович Гусев – кандидат физико-математических наук, профессор направления «Математическая робототехника» Научно-технологического университета «Сириус» Научного центра информационных технологий и искусственного интеллекта.
- Темы научных исследований
- Как поступить
- Вступительные испытания