
МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ЭЛЕКТРИЧЕСКОЙ АКТИВНОСТИ СЕРДЦА

Cupuyc.

Математическое моделирование в биомеханике и медицине. 15-20 мая 2023 г

ВВЕДЕНИЕ

Электрокардиография (ЭКГ) — методика регистрации и исследования электрических полей, образующихся при работе сердца.

- Р-волна деполяризация предсердий
- QRS-комплекс деполяризация желудочков
- Т-волна реполяризация желудочков
- Реполяризация предсердий неразличима в QRS-комплексе

постановка задачи

Монодоменное уравнение:

$$\nabla \cdot (\sigma_i \nabla V_m) = (\kappa + 1)\beta \left(C_m \frac{dV_m}{dt} + I_{\text{mem}} \right) - I_s$$

 σ_i – тензор внутриклеточной проводимости

 σ_e – тензор внеклеточной проводимости

 β – отношение поверхности мембраны к объёму клетки

 C_m – ёмкость мембраны

 I_{st} – внешние и внутренние токи

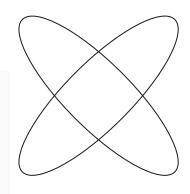
V_т - трансмембранное напряжение

ПОЛНАЯ МОДЕЛЬ ЭКГ

 Ω_0 – тело вокруг сердца

 $\Gamma_{\rm ext}$ - внешняя граница

 Γ_H – интерфейс между Ω и Ω_0


$$\begin{split} -\nabla \cdot ((\sigma_i + \sigma_e) \nabla \phi_0) &= \nabla \cdot (\sigma_i \nabla v) & \text{ в } \Omega \\ -\nabla \cdot (\sigma_0 \nabla \phi_0) &= 0 & \text{ в } \Omega_0 \\ \mathbf{n} \cdot \sigma_0 \nabla \phi_0 &= 0 & \text{ на } \Gamma_{\text{ext}} \\ + \text{ непрерывность } \phi_0 & \text{ на } \Gamma_H \end{split}$$

v – решение задачи Monodomain / Bidomain

 ϕ_0 – электрический потенциал

 σ_0 – тензор проводимости (неоднородный)

Отведение $E_1 = \phi_0(L) - \phi_0(R)$

постановка задачи

Решить поставленную задачу двумя способами и добиться наиболее быстрого результата

РЕШЕНИЕ ПРЯМОЙ ЗАДАЧИ

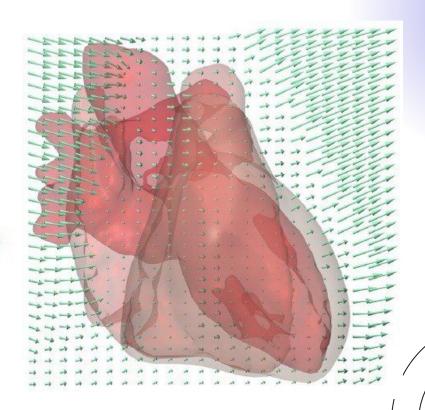
$$-\nabla \cdot ((\sigma_i + \sigma_e)\nabla \phi_0) = \nabla \cdot (\sigma_i \nabla v)$$

Конечно элементная дискретизация

- А левая часть уравнения прямой задачи ЭКГ
- ь правая часть уравнения прямой задачи ЭКГ
- х решение уравнения

Решение предполагает нахождение вектора x в каждый момент времени

ДИСКРЕТНЫЙ СПОСОБ


$$X[v_i] * d[v_i] = b[v_i]$$

LEAD-FIELD METOД

$$V(t) = \int \nabla Z(\vec{x}) \cdot G_{i} \nabla V_{m} \, d\vec{x}$$

$$\nabla \cdot ((G_{\rm i} + G_{\rm e})\nabla Z(\vec{x})) = \sum_{i} c_{i} \, \delta(\vec{x} - \vec{x}_{i})$$

Potse M. Scalable and accurate ECG simulation for reaction-diffusion models of the human heart //Frontiers in physiology. – 2018. – T. 9. – C. 370.

ЭТАПЫ РАБОТЫ

РЕШЕНИЕ 2D-ЗАДАЧИ

Oba cnocoba

РЕШЕНИЕ 3D-ЗАДАЧИ

Оба способа

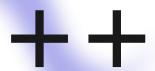
РЕШЕНИЕ 2D-ЗАДАЧИ

Добавление направления волокон

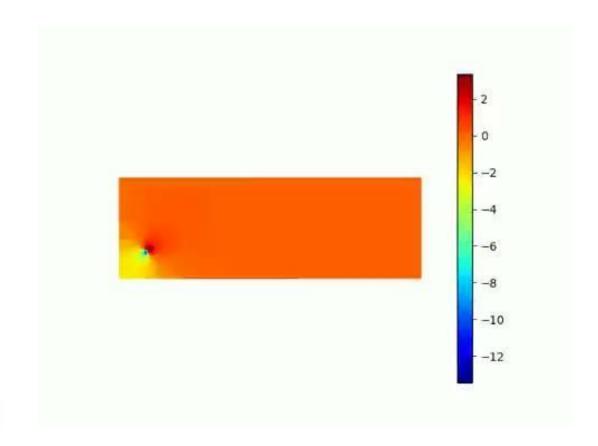
РЕШЕНИЕ 3D-ЗАДАЧИ

На идеализированной модели желудочков сердца

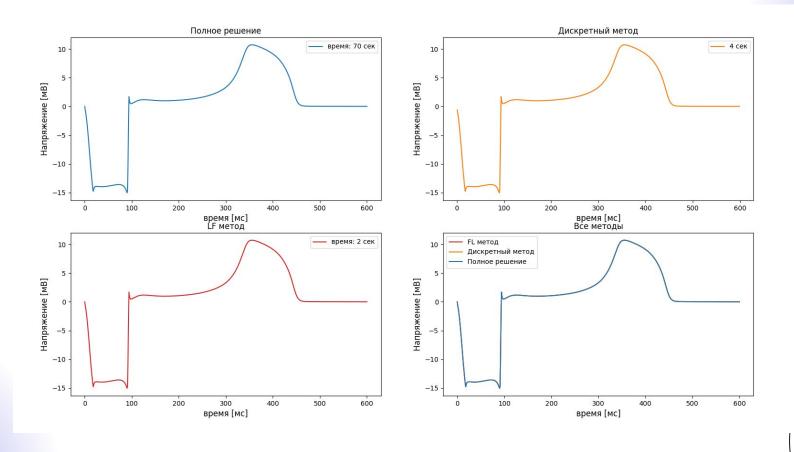
РЕШЕНИЕ 2D-ЗАДАЧИ



ВХОДНЫЕ ДАННЫЕ

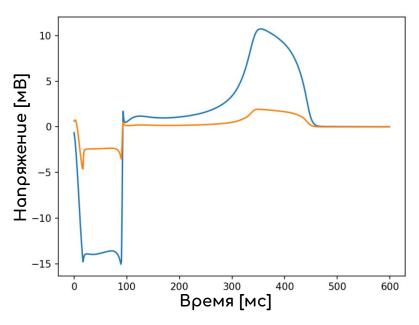

Сердце представляется как прямоугольник, где белая часть - желудочки, черная - внешние органы и ткани

- Даны расчетная сетка для 2D-модели, а также показания трансмембранного напряжения для каждого момента времени (всего 600).
- Считается, что у волокон нет направления, то есть сигма_і и сигма_е
 скаляры.
- Электроды располагаются слева и справа



ВИЗУАЛЬНОЕ ОТОБРАЖЕНИЕ РЕЗУЛЬТАТОВ

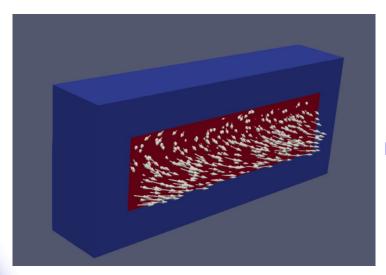
СРАВНЕНИЕ РЕЗУЛЬТАТОВ


РЕШЕНИЕ 2D-ЗАДАЧИ

Добавление направления волокон

СРАВНЕНИЕ РЕЗУЛЬТАТА

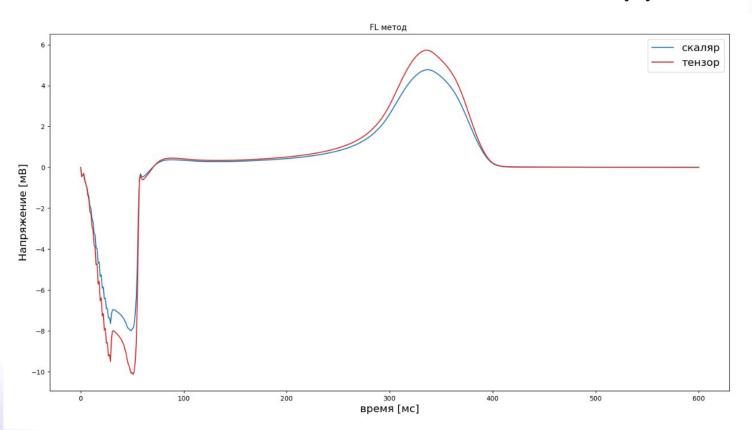
На следующем этапе матричный метод был модернизирован путем добавления направления волокон. Математический смысл - задание сигма_i и сигма_е не скаляром, а матрицей


Полученный график

РЕШЕНИЕ 3D-ЗАДАЧИ

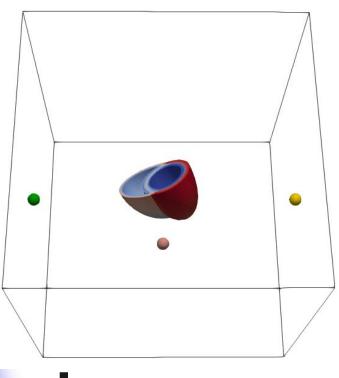
ВХОДНЫЕ ДАННЫЕ

Сердце представляется как параллелепипед, где красная часть - желудочки, черная - внешние органы и ткани; белые стрелки - направление волокон ткани


 Даны расчетная сетка для 3D-модели, а также показания трансмембранного напряжения для каждого момента времени (всего 600).

Количество узлов сетки - 83852, количество тетраэдров - 389138

ГРАФИК РЕШЕНИЯ 3D-ЗАДАЧИ



РЕШЕНИЕ 3D-ЗАДАЧИ

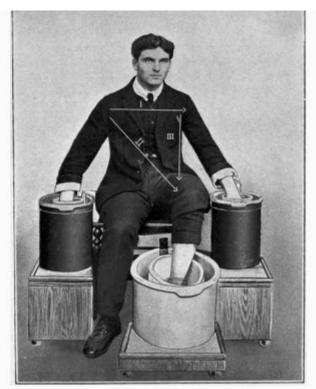
На идеализированной модели желудочков сердца

ВХОДНЫЕ ДАННЫЕ

Сердце представляется в виде идеализированной модели

Memog сопряженных градиентов + python multiprocessing

 Даны расчетная сетка для 3Dмодели, а также показания трансмембранного напряжения для каждого момента времени (всего 600).


Количество узлов сетки - 102820; количество тетраэдров - 644973

отведения эйнтховена


- Эйнтховен отведения I, II, III
- Уилсон и Джонстон (1935) -V1-V6
- Гольдбергер (1942) усиленные отведения aVR aVL, aVF
- 12 канальная ЭКГ (1943)

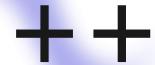


ГРАФИК РЕШЕНИЯ

РЕЗУЛЬТАТЫ

	Полная задача	LF	Дискретный
2D	70 сек	2 сек	4 сек
3D	*660 сек	11 сек	15 сек
3D + волокна	*1300 секунд	22 сек	30 сек
Идеальные желудочки	*24000 секунд	40 сек	46 сек
Идеальные желудочки(parallel)	*15000 секунд	25 сек	33 сек

команда проекта

Багаутдинова Эльмира (Саратовский государственный университет): дискретный метод, его оптимизация Беляева Александра (Московский государственный университет): дискретный метод, его оптимизация Глебова Софья (Южный федеральный университет): изучение статей по теме, прямолинейный метор **Диц Даниил** (HTУ Сириус): LF-метод, его оптимизация, добавление волокон на 3D задачу Крошилина Анна (Рязанский государственный радиотехнический университет им. В.Ф. Уткина): добавление направления волокон, презентация Модестов Кирилл (РХТУ им. Д.И. Менделеева): изучение статей по теме **Рамазанов Али** (HTУ Сириус): LF-метод, его оптимизация Смакотина Алина (Томский государственный университет): презентация, дискретный метоа Ющак Мария (Омский государственный технический университет): изучение статей по теме, прямолинейный метод Дроздов Андрей (НТУ Сириус) - параллельная реализация