АВТОНОМНАЯ НЕКОММЕРЧЕСКАЯ ОБРАЗОВАТЕЛЬНАЯ ОРГАНИЗАЦИЯ ВЫСШЕГО ОБРАЗОВАНИЯ «НАУЧНО-ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ «СИРИУС» (АНОО ВО «УНИВЕРСИТЕТ «СИРИУС»)

УТВЕРЖДАЮ

Директор АНОО ВО «Университет «Сириус»

Л.Г. Кирьянова

2024 г.

ПРОГРАММА ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ

для поступающих на обучение по образовательной программе высшего образования – программе подготовки научных и научно-педагогических кадров в аспирантуре по научной специальности

1.4.16 Медицинская химия

СОГЛАСОВАНО:

Заместитель директора по образовательной деятельности

Председатель ученого совета, директор

Научного центра трансляционной медицины

Руководитель

Приемной комиссии

Е.В. Саврук

Р.А. Иванов

Б.Е. Кадлубович

общие положения

Программа вступительных испытаний предназначена для лиц, поступающих на обучение по образовательной программе высшего образования — программе подготовки научных и научно-педагогических кадров в аспирантуре по научной специальности 1.4.16 Медицинская химия (далее — образовательная программа).

В программу вступительных испытаний включено описание форм и процедур вступительных испытаний, представлено содержание тем и критерии оценки.

Цель проведения вступительных испытаний — отбор наиболее подготовленных поступающих на обучение по образовательной программе, в том числе, определение уровня их готовности к самостоятельной научной и проектной деятельности.

Основные задачи вступительных испытаний:

- выявление и оценка уровня сформированности общекультурных, общепрофессиональных и профессиональных компетенций поступающего;
- определение уровня готовности к научно-исследовательской и проектной деятельности, работе в составе научно-исследовательских коллективов;
 - выяснение познавательной и мотивационной сферы поступающего;
 - выявление научных интересов;
- определение уровня научно-технической эрудиции и языковой подготовки поступающего.

Вступительные испытания проводятся в форме письменного экзамена и собеседования. Каждое вступительное испытание оценивается по стобалльной шкале. Язык (языки) проведения письменного экзамена – русский, собеседования – русский и английский.

Проведение вступительных испытаний осуществляется с применением дистанционных технологий.

Продолжительность письменного экзамена: 120 минут.

Продолжительность собеседования: 15 - 30 минут.

1. ТЕМЫ, ВКЛЮЧЕННЫЕ В ПРОГРАММУ ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ

- 1.1. Номенклатура органических соединений
- 1.2. Строение органических соединений
- 1.3. Изомерия органических соединений
- 1.4. Насыщенные углеводороды
- 1.5. Циклические углеводороды
- 1.6. Непредельные углеводороды
- 1.7. Ароматические углеводороды

- 1.8. Ароматические гетероциклические соединения
- 1.9. Галогенпроизводные углеводородов
- 1.10. Спирты, фенолы, простые эфиры
- 1.11. Кетоны, альдегиды и их производные
- 1.12. Производные карбоновых кислот
- 1.13. Амины
- 1.14. Углеводы и их производные
- 1.15. Аминокислоты и их производные
- 1.16. Металлоорганические соединения
- 1.17. Нитросоединения
- 1.18. Использование защитных групп в органическом синтезе
- 1.19. Реакций нуклеофильного замещения в алифатических соединениях
- 1.20. Реакции нуклеофильного замещения в ароматических соединениях
- 1.21. Реакции электрофильного замещения в ароматических соединениях
- 1.22. Реакции электрофильного присоединения
- 1.23. Реакции радикального присоединения.
- 1.24. Реакции элиминирования
- 1.25. Реакции присоединения по карбонильной группе
- 1.26. Электронные эффекты заместителей
- 1.27. Кислотно-основные взаимодействия в органической химии
- 1.28. Многостадийный органический синтез
- 1.29. Практические аспекты химического синтеза
- 1.30. Методы выделения и очистки органических соединений.
- 1.31. Высокоэффективная жидкостная хроматография
- 1.32. Физико-химические методы установления структуры органических соединений
 - 1.33. Основные понятия медицинской химии
 - 1.34. Таргетная доставка лекарств
 - 1.35. Фенотипический скрининг
 - 1.36. Направленная деградация белка
 - 1.37. Дизайн молекулярных клеев и PROTAC
 - 1.38. Мишень-ориентированный скрининг
 - 1.39. Природные скэффолды для дизайна новых лекарств
 - 1.40. Способы введения низкомолекулярных препаратов в организм
 - 1.41. Скрининг для поиска хит-соединений
 - 1.42. Биоизостеризм
 - 1.43. Рациональные подходы в поиске новых лекарственных средств
 - 1.44. Скаффолд-хоппинг
 - 1.45. Способы проникновения содержимого липосом в клетку

- 1.46. Стратегии дизайна аналогов категории «следующий в классе»
- 1.47. Концепция пролекарств
- 1.48. Качественный и количественный анализ субстанции или лекарственного средства
 - 1.49. Противораковые терапевтические мишени
 - 1.50. Классификация вирусов по Балтимору
 - 1.51. Обратимые и необратимые ингибиторы ферментов
 - 1.52. Противовирусные терапевтические мишени
- 1.53. Биохимические и биофизические методы определения афинности и активности соединений
 - 1.54. Поиск противовирусных и антибактериальных препаратов
 - 1.55. Направленная доставка препаратов
 - 1.56. In vivo тестирование противоопухолевых препаратов
- 1.57. Биологические мишени для таргетирования низкомолекулярных соединений
 - 1.58. Принципы действия противовирусных соединений
 - 1.59. Стратегия масштабировании химических процессо
 - 1.60. Доклинические испытания фармпрепаратов
 - 1.61. Клинические испытания фармпрепаратов
 - 1.62. Регуляторные органы РФ, США, ЕС. Регистрационное досье
 - 1.63. Стратегия развития Научно-технологического университета «Сириус»;
- 1.64. Нормативные правовые акты Российской Федерации, определяющие направления развития науки и отраслей экономики.

2. СОДЕРЖАНИЕ ОСНОВНЫХ ТЕМ

- **2.1 Номенклатура органических соединений:** ациклические соединения. Циклические углеводороды и гетероциклические соединения. Соединения с одним заместителем или несколькими одинаковыми заместителями. Соединения с различными заместителями. Систематическая номенклатура основных классов органических соединений и тривиальные названия их типичных представителей.
- **2.2** Строение органических соединений: гибридизация. Строение sp³-,sp²- и sp-гибридизованных атомов углерода, азота и кислорода. Ковалентные связи в органических соединениях: одинарная, двойная, тройная. Донорно- акцепторные связи. Водородная связь. Ионная связь. Диполь-дипольные взаимодействия. Дисперсионные взаимодействия.
- **2.3 Изомерия органических соединений:** структурные и пространственные изомеры. Конформация. Виды структурной изомерии. Таутомерия. Виды пространственной изомерии. Изомерия непредельных соединений. Понятие

хиральность. Энантиомеры и диастереомеры. Хиральность sp^3 -атома углерода. Другие типы оптически активных веществ.

- **2.4 Насыщенные углеводороды:** строение, получение, реакционная способность.
- **2.5 Циклические углеводороды:** особенности строения соединений с малыми циклами, циклопентана и циклогексана. Получение и реакционная способность.
- **2.6 Непредельные углеводороды:** алкены, сопряжённые диены, алкины. Строение, получение и реакционная способность.
- **2.7 Ароматические углеводороды:** понятие и условия ароматичности. Строение, получение и реакционная способность ароматических углеводородов.
- **2.8 Ароматические гетероциклические соединения:** фуран, тиофен, пиррол, пиридин. Строение, получение и реакционная способность.
- **2.9 Галогенпроизводные углеводородов:** строение, получение и реакционная способность.
- **2.10** Спирты, фенолы, простые эфиры: строение, получение, реакционная способность.
- **2.11 Кетоны, альдегиды и их производные:** строение, получение, реакционная способность.
- **2.12 Производные карбоновых кислот:** карбоновые кислоты, сложные эфиры, амиды, ангидриды, галогенангидриды, нитрилы. Строение, получение, взаимные превращения, реакционная способность.
- **2.13 Амины:** первичные, вторичные и третичные алифатические амины. Ароматические и алифатические аминосоединения. Строение, получение, реакционная способность.
 - 2.14 Углеводы и их производные: строение, реакционная способность.
 - 2.15 Аминокислоты и их производные: строение, реакционная способность.
- 2.16 Металлоорганические соединения: литий- и магнийорганические соединения, их получение из органогалогенидов и металла. Использование магния Рике для синтеза магнийорганических соединений. Реакции литий- и магнийорганических соединений с водой, кислородом, диоксидом углерода, альдегидами, кетонами, сложными эфирами, нитрилами, эпоксидами, орто-эфирами, третичными амидами.
- **2.17 Нитросоединения:** алифатические и ароматические нитросоединения. Получение. Химические свойства. Особенности строения нитрогруппы. Промежуточные продукты восстановления нитрогруппы (нитрозосоединения, арилгидроксиламины, азокси-, азо-, гидразосоединения).
- **2.18** Использование защитных групп в органическом синтезе. Защита С-Нсвязей в алкинах, ее применение в синтезах ди- и полиинов. Защитные группы: бензильная, пметоксибензильная, тритильная, триметилсилильная,

третбутилдиметилсилильная, тетрагидропиранильная. Защита ОН-группы. Метилендиокси-защитная группа для двухатомных фенолов. Защита карбонильной группы в альдегидах и кетонах. Защита карбоксильной группы: бензиловые и пметоксибензиловые эфиры. Защита аминогруппы. Защитные группы: ацетильная, фталоильная, сукциноильная, бензоксикарбонильная (Cbz), третбутоксикарбонильная (Вос). Стратегия использования защитных групп: принципы ортогональной стабильности и модулированной лабильности.

- **2.19** Реакций нуклеофильного замещения в алифатических соединениях: механизм реакций S_N1 и S_N2 . Основные типы нуклеофилов и уходящих групп. Влияние заместителей, реагентов, растворителя, концентраций на протекание реакции.
- **2.20** Реакции нуклеофильного замещения в ароматических соединениях: механизм реакций S_N Ar. Основные типы нуклеофилов и уходящих групп. Влияние заместителей, реагентов и растворителя на протекание реакции.
- **2.21** Реакции электрофильного замещения в ароматических соединениях: механизм реакций S_EAr . Основные типы электрофилов. Влияние заместителей, реагентов и растворителя на протекание реакции.
- **2.22 Реакции электрофильного присоединения:** механизм реакций Ad_E2 . Основные типы электрофилов. Влияние заместителей, реагентов и растворителя на протекание реакции.
- **2.23 Реакции радикального присоединения.** Механизм реакций Ad_R. Эффект Караша, типовые реакции.
- **2.24 Реакции элиминирования:** механизм реакций Е1 и Е2. Влияние заместителей, реагентов и растворителя на протекание реакции.
- **2.25 Реакции присоединения по карбонильной группе:** механизмы присоединения в кислых и основных условиях.
- **2.26** Электронные эффекты заместителей: индуктивный эффект, донорные и акцепторные заместители, затухание индуктивного эффекта. Мезомерный эффект: донорные и акцепторные заместители.
- **2.27** Кислотно-основные взаимодействия в органической химии: Теория Бренстеда-Лоури. Теория Льюиса. Типичные представители кислот Льюиса, оснований Льюиса. Способы относительной и количественной оценки кислотности, основности. Качественная и количественная оценка кислотности, основности. Жесткие кислоты и жесткие основания.
- **2.28 Многостадийный органический синтез:** планирование синтеза сложных органических молекул. Ретросинтетический анализ. Синтоны. Ретроны. Трансформы. Реакции образования С-С связей.
- **2.29 Практические аспекты химического синтеза:** Практические аспекты химического синтеза: принципы безопасной работы в лаборатории. Постановка

химических реакций: подбор лабораторной посуды и оборудования, соотношение реагентов, выбор растворителя и условий проведения реакции. Способы мониторинга протекания химической реакции. Методы и приемы работы в инертной атмосфере.

- 2.30 Методы выделения и очистки органических соединений. Перегонка: принцип действия, особенности перегонки с паром. Экстракция: принцип действия, особенности практического использования. Перекристаллизация: принцип действия, выбор растворителей, особенности практического использования. Фильтрация: принцип действия, особенности практического использования. Препаративная жидкостная хроматография: тонкослойная хроматография, колоночная хроматография при атмосферном давлении, хроматография на флеш-картриджах, ВЭЖХ.
- 2.31 Высокоэффективная жидкостная хроматография. Принцип хроматографического разделения смеси органических веществ методом колоночной хроматографии. Тонкослойная хроматография: варианты исполнения, принцип разделения, методы детектирования. Принцип работы, отличие от колоночной хроматографии, ограничения метода. Основы метода газовой хроматографии в тандеме с масс-спектрометрией. Высокоэффективная жидкостная хроматография: принцип работы, отличие от колоночной хроматографии, ограничения метода. Основы метода газовой хроматографии в тандеме с масс-спектрометрией.
- **2.32** Физико-химические методы установления структуры органических соединений. Спектроскопия ЯМР: принцип действия, химический сдвиг, интенсивность сигнала, мультиплетность; спектроскопия ЯМР на ядрах ¹H, ¹³C, ¹⁹F и ³¹P; возможности двумерной спектроскопии ЯМР. Основы инфракрасной спектрометрии: принцип действия, характеристичные сигналы, область применения. Масс-спектрометрия: принцип действия, виды ионизации, фрагментация, область применения. Прочие методы: спектроскопия в УФ и видимом диапазоне света, рентгеновская кристаллография и прочие.
- **2.33** Основные понятия медицинской химии. Хит-соединение, соединение лидер, лекарственные кандидаты. Параметры оценки и целевой профиль соединения лидера и лекарственного кандидата.
- **2.34 Таргетная доставка лекарств.** Принципы и преимущества таргетной доставки лекарственных препаратов. Основные системы направленной доставки препаратов. Основные механизмы обеспечения таргетной доставки и высвобождения лекарств в организме.
 - 2.35 Фенотипический скрининг: достоинства и недостатки.
- **2.36 Направленная** деградация белка. Механизмы направленной деградации белка и их использование в разработке лекарственных препаратов.
- **2.37** Дизайн молекулярных клеев и PROTAC. Принципы дизайна молекулярных клеев и PROTAC.

- 2.38 Мишень-ориентированный скрининг: достоинства и недостатки.
- **2.39 Природные скэффолды для дизайна новых лекарств.** Стратегии обнаружения и модификации природных скэффолдов для дизайна новых лекарств. Особенности и примеры биоизостерной замены, скэффолд-хоппинга в рамках оптимизации природных соединений для биомедицинских приложений. Низкомолекулярные аналоги природных соединений.
- **2.40** Способы введения низкомолекулярных препаратов в организм. Оптимизация хит-соединений. Стратегии повышения растворимости, биодоступности, эффективности, стабильности, безопасности соединения.
 - 2.41 Скрининг для поиска хит-соединений, его типы.
- **2.42 Биоизостеризм.** Понятие биоизостерной замены. Примеры биоизостерных аналогов одновалентных, двухвалентных и трехвалентных групп. Аналоги ключевых функциональных групп и ароматических колец.
 - 2.43 Рациональные подходы в поиске новых лекарственных средств.
 - 2.44 Скаффолд-хоппинг. Примеры эффективной замены скаффолда.
 - 2.45 Способы проникновения содержимого липосом в клетку.
- **2.46** Стратегии дизайна аналогов категории «следующий в классе». Роль данного подхода в разработке современных лекарств. Примеры и краткое описание поведенческих тестов для мелких животных (мыши, крысы).
- **2.47 Концепция пролекарств.** Функциональные и защитные группы, использующиеся для улучшения биодоступности.
- **2.48** Качественный и количественный анализ субстанции или лекарственного средства: примеры, достоинства и недостатки.
- **2.49** Противораковые терапевтические мишени. Особенности метаболизма раковых клеток. Механизмы развития резистентности раковых клеток. Механизмы действия противораковых препаратов.
 - 2.50 Классификация вирусов по Балтимору.
- **2.51 Обратимые и необратимые ингибиторы ферментов.** Принципы разработки ковалентных ингибиторов ферментов. Реакционноспособные группы в дизайне фармпрепаратов.
- **2.52 Противовирусные терапевтические мишени.** Вирусы, мишенью действия в которых может быть вирусная протеаза. Жизненный цикл вирусной частицы. Механизмы действия противовирусных препаратов.
- **2.53** Биохимические и биофизические методы определения афинности и активности соединений. Преимущества и ограничения.
- **2.54 Поиск противовирусных и антибактериальных препаратов.** Основные системы тестирования соединений с потенциальной антибактериальной и антивирусной активностью.

- **2.55 Направленная доставка препаратов:** принципы и преимущества таргетной доставки лекарственных препаратов. Основные системы направленной доставки препаратов. Основные механизмы обеспечения таргетной доставки и высвобождения лекарств в организме.
- **2.56 In vivo тестирование противоопухолевых препаратов.** Способы in vivo тестирования противоопухолевых препаратов.
- **2.57** Биологические мишени для таргетирования низкомолекулярных соединений. Типы биологических мишеней для таргетирования низкомолекулярных соединений.
 - 2.58 Принципы действия противовирусных соединений.
- **2.59** Стратегия масштабировании химических процессов. Экономические аспекты процессной химии.
- **2.60** Доклинические испытания фармпрепаратов. Основные этапы доклинических испытаний фармпрепаратов. Принципы этической регуляции in vivo тестов.
 - 2.61 Клинические испытания фармпрепаратов
- **2.62** Регуляторные органы РФ, США, ЕС. Регистрационное досье. Пострегистрационные исследования.
- **2.63** Стратегия развития Научно-технологического университета «Сириус». Миссия, цели и задачи университета. Основные принципы деятельности. Приоритетные направления развития.
- 2.64 Нормативные правовые акты Российской Федерации, определяющие направления развития науки и отраслей экономики:

Указ Президента РФ от 21.07.2020 № 474 «О национальных целях развития Российской Федерации на период до 2030 года»;

Указ Президента РФ от 01.12.2016 № 642 «О Стратегии научнотехнологического развития Российской Федерации»;

Указ Президента РФ от 02.07.2021 № 400 «О Стратегии национальной безопасности Российской Федерации»;

Указ Президента Российской Федерации от 09.05.2017 № 203 «О Стратегии развития информационного общества в Российской Федерации на 2017 – 2030 годы»;

Указ Президента Российской Федерации от 10.10.2019 № 490 «О развитии искусственного интеллекта в Российской Федерации» (вместе с «Национальной стратегией развития искусственного интеллекта на период до 2030 года»);

Прогноз научно-технологического развития Российской Федерации на период до 2030 года, утвержденный Правительством РФ;

Распоряжение Правительства РФ от 31.12.2020 № 3684-р «Об утверждении Программы фундаментальных научных исследований в Российской Федерации на долгосрочный период (2021 - 2030 годы)»;

Постановление Правительства Российской Федерации от 15.04.2014 № 313 «Об утверждении государственной программы Российской Федерации «Информационное общество»»;

Распоряжение Правительства Российской Федерации от 01.11.2013 № 2036-р «Об утверждении Стратегии развития отрасли информационных технологий в Российской Федерации на 2014 – 2020 годы и на перспективу до 2025 года»;

Распоряжение Правительства Российской Федерации от 19.08.2020 № 2129-р «Об утверждении Концепции развития регулирования отношений в сфере технологий искусственного интеллекта и робототехники до 2024 года».

Рекомендуемая литература:

- 1. Реутов О.А., Курц А.Л., Бутин К.П. Органическая химия. В 4х частях. М: Бином. Лаборатория знаний, 2017.
- 2. Днепровский А.С., Темникова Т.И. Теоретические основы органической химии (2е изд.). Л.: Химия, 1991.
 - 3. Органикум. В пер. Гришиной Г.В., Терентьева П.Б. М.: Мир, 2014.
- 4. Робертс Дж., Кассерио М. Основы органической химии. Т.1,2. М. "Мир", 1978.
- 5. Терней А. Современная органическая химия. Т. 1,2. М., "Мир" 1981. 4. Г. Беккер, В. Бергер и др.
- 6. Айхер Т., Титце Л.Ф. Препаративная органическая химия. М.: Мир, 2009.
- 7. Сильверстейн Р., Кимл Д., Вебстер Ф. Спектрометрическая идентификация органических соединений. М.: Бином. Лаборатория знаний, 2014.
- 8. Пентин Ю.А., Вилков Л.В. Физические методы исследования в химии. М.: Мир, 2006.
- 9. Курц А.Л., Ливанцов М.В., Чепраков А.В., Ливанцова Л.И., Зайцева Г.С., Теренин В.И. и др. Практикум по органической химии. М.: Бином. Лаборатория знаний, 2010.
- 10. Смит В.А., Дильман А.Д. Основы современного органического синтеза. М.: Бином. Лаборатория знаний, 2009.
 - 11. Сайкс П. Механизмы реакций в органической химии. М.: Химия, 1973.
- 12. Керри Ф., Сандберг Р. Углубленный курс органической химии. М. "Химия", 1981 год.
- 13. Исаева О.А. Физико-химические методы анализа органических соединений. Воронеж: Издательско-полиграфический центр Воронежского государственного университета, 2008.
- 14. Стратегия развития Университета «Сириус»: https://siriusuniversity.ru/about/concept.

3. ПРИМЕРЫ ЗАДАНИЙ ПИСЬМЕННОГО ЭКЗАМЕНА

3.1. Два теоретических вопроса (оцениваются максимально до 30 баллов каждый):

Вопросы:

- 1. Реакции нуклеофильного замещения в ароматических углеводородах.
- 2. Принципы и преимущества таргетной доставки лекарственных препаратов. Основные системы направленной доставки препаратов. Основные механизмы обеспечения таргетной доставки и высвобождения лекарств в организме.

3.2. Синтетическая задача (оценивается максимально до 40 баллов каждый):

3. Предложите синтез трициклического индолина **I** из бензола, указывая на каждой стадии условия проведения реакций и их механизмы. Все использующиеся органические реактивы должны быть получены из ацетилена (для данных превращений механизмы представлять не нужно).

4. ОБЩИЕ КРИТЕРИИ ОЦЕНИВАНИЯ СОБЕСЕДОВАНИЯ

При оценке ответов поступающего экзаменационная комиссия руководствуется следующими критериями:

- способность структурировать и аргументировать свои высказывания;
- способность к анализу и интерпретации фактов и явлений;
- понимание сущности научно-исследовательской деятельности;
- знание понятийного аппарата, видов и способов его представления;
- умение аргументировать ответ, выявлять причинно-следственные связи, прогнозировать свойства химических соединений в зависимости от их строения;
- умение анализировать и систематизировать фактический материал по данному разделу, излагать его в логической последовательности;
- степень эрудированности испытуемого, его умение применять фактический материал в практической плоскости;
 - понимание концепции Стратегии развития Университета «Сириус»;
 - понимание роли и задач науки и технологий в достижении целей

национального развития России, повышении безопасности и качества жизни граждан, в том числе в выбранной сфере профессиональной деятельности;

- уровень имеющихся к данному моменту общекультурных, общепрофессиональных и профессиональных компетенций;
 - публикационная активность поступающего;
- умение определить область научных интересов и планы, связанные с осуществлением дальнейших научных исследований в Университете «Сириус»;
- способность поступающего сделать краткую презентацию своих научных интересов и (или) поддержать беседу на научную тему на английском языке.