Университет «Сириус»

Математическое моделирование, численные методы и комплексы программ

Руководители

Леонид Альбертович Меркин

Профессор, PhD по специальности математика Делфтского технического университета (Нидерланды), профессор Научно-технологического университета «Сириус», руководитель направления «Финансовая математика и финансовые технологии»

1) «Разработка алгоритмов и программных пайплайнов для функциональной аннотации транскриптомных и геномных данных»

В настоящее время получен колоссальный объем различных типов геномных данных, включая сборки полных геномов и транскриптомов, для большого числа немодельных организмов. Предлагаемый проект ориентирован на разработку алгоритмов и программных пайплайнов для поточной функциональной аннотации таких массивов на основе референсных баз данных и структурных особенностей нуклеотидных последовательностей. В последнем случае особый интерес сегодня представляют модели поиска локализации и структуры новых генов. Предполагается использование подходов ML и AI, их тестирование и оптимизация.

Научный руководитель: Кирилл Андреевич Винников – российский учёный в области морской биологии и экологии, директор Института Мирового океана Дальневосточного федерального университета, PhD по биологии, профессор Научно-технологического университета «Сириус», направление «Вычислительная биология», научная сфера: ихтиология, морская экология, молекулярная биология, биоинформатика, биогеография.

2) «Разработка алгоритмов и программных пайплайнов для поиска функциональных сигналов отбора в геномных данных»

Большой объем различных типов геномных данных позволяет производить сравнительный анализ большого числа нуклеотидных последовательностей с целью выявления геномных участков, находящихся под действием отбора. Данный проект направлен на разработку алгоритмов и программных пайплайнов для автоматизации поиска таких участков или отдельных нуклеотидных сайтов, как при подходе сравнения нескольких биологическими таксонов, так и при анализе флуктуаций скоростей нуклеотидных замен внутри одного вида. Будут рассмотрены модели поиска сигналов направленного, балансирующего и дизруптивного отбора в геномах немодельных видов.

Научный руководитель: Кирилл Андреевич Винников – российский учёный в области морской биологии и экологии, директор Института Мирового океана Дальневосточного федерального университета, PhD по биологии, профессор Научно-технологического университета «Сириус», направление «Вычислительная биология», научная сфера: ихтиология, морская экология, молекулярная биология, биоинформатика, биогеография.

3) «Разработка алгоритмов для предсказания границ экзонов в транскриптомных данных»

В процессе структурной аннотации транскриптомных данных большое значение имеет понимание границ кодирующих экзонных участков. Особенно важно знать последовательности экзонов в транскриптах при проектировании гибридизационных зондов, которые затем применяются в экспериментальных работах по выемке полных экзомов ("exome capture") у немодельных организмов. Обычным подходом для предсказания границ экзонов в таких случаях является использование референсных геномных аннотаций. Альтернативные подходы de novo предсказания координат экзонов в транскриптах без использования референса пока не дают результатов, пригодных для внедрения в экспериментальную практику. Именно разработке и тестированию алгоритмов de novo предсказания границ экзонов с использованием методов ML и AI предлагается будет посвящен настоящий проект.

Научный руководитель: Кирилл Андреевич Винников – российский учёный в области морской биологии и экологии, директор Института Мирового океана Дальневосточного федерального университета, PhD по биологии, профессор Научно-технологического университета «Сириус», направление «Вычислительная биология», научная сфера: ихтиология, морская экология, молекулярная биология, биоинформатика, биогеография.

4) «Компьютерная разработка диагностических агентов для визуализации амилоидных структур»

Для визуализации амилоидных структур в человеческом мозге методом магнитно-резонансной томографии на ядрах 19F могут быть использованы фторсодержащие соединения, связывающиеся с амилоидными фибриллам. Проект направлен на исследование взаимодействий таких молекул с фибриллами методами компьютерного моделирования и разработку новых потенциальных диагностических агентов, обладающих высоким сродством к агрегатам бета-амилоида, низкой токсичностью, достаточной проницаемостью гематоэнцефалического барьера.

Научный руководитель: Игорь Алексеевич Седов – доктор химических наук, Научно-технологического университета «Сириус», направление «Вычислительная биология», научные интересы: физическая химия, биофизическая химия, компьютерное моделирование, химическая термодинамика.

5) «Разработка и реализация ML потенциалов для молекулярной динамики материалов и белков»

Молекулярная динамика и её производные мощный инструмент для исследования молекулярных механизмов в белках и ферментах. Использование силовых полей в моделировании позволяет иметь высокую производительность счёта, но не позволяет исследовать ферментативные реакции. Существующие подходы для преодоления этого ограничения используют методы квантовой химии, что значительно уменьшает производительность расчётов. Перспективной заменой квантовой химии являются потенциалы на основе моделей ML (QML), они позволяют получить желаемую производительность при сохранении точности расчётов. Работа будет посвящена разработке моделей и инструментов для применения QML в структурной биологии и науках о материалах.

Научный руководитель: Андрей Викторович Головин – доктор химических наук, ведущий научный сотрудник Научно-технологического университета «Сириус», направление «Вычислительная биология» Научного центра информационных технологий и искусственного интеллекта, научные интересы: химия и компьютерное моделирование биоструктур, в частности коротких последовательностей ДНК и РНК, биосенсоры.

6) «Разработка эффективного подхода к локальному дизайну белков на основе AlphaFold и TRRosetta»

Успехи методов ML для предсказания структур белков потрясли область структурной биологии в последние 2 года, стали появляться подходы к использованию  этих моделей для дизайна новых  белков и ферментов. Трудность дизайна состоит в необходимости  поиска целевой структуры в пространстве последовательностей, которое астрономически велико. В проекте предполагается разработка методов ML для эффективного исследования пространства последовательностей при заданных  ограничениях.

Научный руководитель: Андрей Викторович Головин – доктор химических наук, ведущий научный сотрудник Научно-технологического университета «Сириус», направление «Вычислительная биология» Научного центра информационных технологий и искусственного интеллекта, научные интересы: химия и компьютерное моделирование биоструктур, в частности коротких последовательностей ДНК и РНК, биосенсоры.

7) «Рациональный дизайн терапевтических пептидов с искусственными аминокислотами»

Лекарственные препараты на основе пептидов и белков уверено захватывают фармацевтический рынок, не удобной особенностью таких  препаратов является ограниченное время жизни в организме. Введение неприродных аминокислот в белки и пептиды позволяет преодолеть эту проблему.  В проекте предполагается использование методов молекулярного моделирования для эффективного проектирования новых препаратов на основе белков и пептидов с неприродными аминокислотами.

Научный руководитель: Андрей Викторович Головин – доктор химических наук, ведущий научный сотрудник Научно-технологического университета «Сириус», направление «Вычислительная биология» Научного центра информационных технологий и искусственного интеллекта, научные интересы: химия и компьютерное моделирование биоструктур, в частности коротких последовательностей ДНК и РНК, биосенсоры.

8) «Математические и вычислительные основы реконструкции «эволюционного пространства гена» или «Модификация и реализация методов восстановления скрытых геометрических структур в больших данных для исследования эволюционных пространств»

Проблема «эволюционного пространства гена» или «пространства последовательностей (протеиновых и нуклеотидных)» известна уже немалое время. Однако наиболее известные работы по этой теме (по запросу «sequence space» в PubMed) апеллируют к чисто эволюционным аспектам этой проблемы (эволюционные и адаптивные ландшафты). Однако в проблеме пространства последовательностей есть и чисто геометрический аспект, заключающийся в корректном перенесении попарных эволюционных расстояний из соответствующей матрицы в метрическое/неметрическое пространство. Эти попытки были выполнены впервые нами около семи лет назад, однако эскиз эволюционного пространства и, в особенности, методы, использованные при его построении, не были достаточно строгими. Однако важность данной проблемы, решение которой позволяет выявить скрытый до поры эволюционный паттерн, имеющий очевидные фундаментально важные свойства, продолжает оставаться очевидной. В предлагаемом проекте мы выполним с максимальной математической строгостью задачу переноса матрицы попарных расстояний в адекватное пространство и сопоставим полученные данные  с  полученными ранее. Работа потребует существенного математического и вычислительного ресурса и на данной стадии будет посвящена анализу математических оснований данной проблемы.

Цель работы: Разработка строгих  математических подходов для трансформации матриц попарных эволюционных  расстояний в геометрические координаты (задача многомерного шкалирования, адаптированная для больших массивов данных и пространств большой размерности).

Научный руководитель: Юрий Борисович Порозов – кандидат математических наук, ведущий научный сотрудник Научно-технологического университета «Сириус», направление «Вычислительная биология» Научного центра информационных технологий и искусственного интеллекта.

9) «Разработка и реализация крупнозернистых методов планирования конформационных перестроек в белках»

Белки, как и большинство больших органических молекул, тем более – полимеров, являются структурами гибкими. Важно понимать, что их гибкость, а) не случайна и б) обеспечивает выполнение белками их функций. Таким образом планирование движения (в иностранной литературе) или моделирование конформационной подвижности – ключ к пониманию функционирования белков и важнейший этап к моделированию последовательностей белков de novo.

Проблема состоит в том, что сделать это трудно. На то есть как «философские» так и чисто технические причины типа степеней свободы, дискретизации и пр. Цель – разработать и верифицировать крупнозернистые модели белковой подвижности для одноцепочечных и многоцепочечных белков.

Научный руководитель: Юрий Борисович Порозов – кандидат математических наук, ведущий научный сотрудник Научно-технологического университета «Сириус», направление «Вычислительная биология» Научного центра информационных технологий и искусственного интеллекта.

10) «Изучение динамики функционирования скелетных мышц человека на уровне метаболизма, сигнальных путей и регуляции экспрессии генов в ответ на различные разновидности физиологических стрессов (ишемия, гипоксия, физическое упражнение)»

Скелетные мышцы составляют около 40 % от массы тела взрослого человека и вносят существенный вклад в регуляцию метаболизма на уровне всего организма. Регулярные низкоинтенсивные упражнения (аэробные или выносливостные тренировки) оказывают значимое влияние на скелетные мышцы: выражено увеличивают капиллярную и митохондриальную плотность – показатели, влияющие на транспорт O2 и CO2, на обмен метаболитов между кровью и мышцей, а также на процессы окислительного фосфорилирования. Эти функциональные изменения приводят к улучшению аэробной работоспособности на уровне скелетных мышц и организма, а также к снижению факторов риска развития сердечно-сосудистых и метаболических заболеваний. Адаптация клеток скелетных мышц к стрессовым условиям, в том числе, к регулярным аэробным физическим нагрузкам обеспечивается существенными метаболическими изменениями, активацией в них сигнальных путей вовремя и после каждого упражнения, приводящей к изменению экспрессии огромного количества генов. Несмотря на существующие попытки экспериментально исследовать механизмы регуляции и передачи сигналов при адаптации мышечных клеток к стрессовым условиям, к настоящему времени данные, полученные на скелетных мышцах человека in vivo, представляют собой усредненные количественные показатели содержания основных метаболитов и энергетических молекул; а также количественный вклад отдельных сигнальных молекул в регуляцию экспрессии генов внутриклеточного ответа до сих пор полностью не исследован. В рамках диссертационной работы будет освоен модульный подход моделирования в компьютерной системе BioUML с целью разработки и анализа интегрированной модели функционирования скелетных мышц человека, учитывающей структурно-функциональные взаимосвязи на всех трёх уровнях организации (метаболический, сигнальные пути и регуляция экспрессии генов) и между ними; проведена верификация разработанной модели к опубликованным и оригинальным экспериментальным данным.

Научный руководитель: Илья Ринатович Акбердин – кандидат биологических наук, старший научный сотрудник Научно-технологического университета «Сириус», направление «Вычислительная биология» Научного центра информационных технологий и искусственного интеллекта.

11) «Математическое моделирование процессов заражения, распределения вируса SARS-CoV-2 в организме человека с учётом формирования B- и Т-клеточных иммунных ответов»

Текущая вспышка коронавирусного заболевания 2019 г. (COVID-19) является чрезвычайной ситуацией во всем мире, поскольку ее быстрое распространение и высокий уровень смертности являются серьезной биологической угрозой. Число людей с тяжелым острым респираторным синдромом, вызванным коронавирусом 2 (SARS-CoV-2), возбудителем COVID-19, продолжает достаточно быстрыми темпами расти во всем мире и по настоящее время. У пациентов с COVID-19 может развиться пневмония, тяжелые симптомы острого респираторного дистресс-синдрома (ARDS) и полиорганная недостаточность. Тем не менее, разнообразие форм данного заболевания, в сочетании с массовым бессимптомным носительством SARS-CoV-2, требуют дальнейших исследований патогенеза этого заболевания. Более того, как уже экспериментально показано, поражение органов и тканей при заражении SARS-CoV-2 является иммуноопосредованным, а интенсивность вирусовыделения варьирует в очень широких пределах, равно как и восприимчивость к заражению, тяжесть течения инфекционного процесса и вероятность гибели. Иммуноопосредованность патологических процессов означает весьма нелинейную связь между устойчивостью к болезни и наличию реакций специфического иммунитета. В этой связи применение методов математического моделирования для изучения особенностей взаимодействия вируса с клетками хозяина с учетом иммунного ответа является крайне существенным как для фундаментального понимания патогенеза заболевания COVID-19, так и для ускорения создания целенаправленных лекарственных препаратов при его лечении. В рамках диссертационной работы будет освоен модульный подход моделирования в компьютерной системе BioUML с целью разработки и анализа модульной модели заражения, распределения вируса SARS-CoV-2 в тканях и органах человека, модульной модели иммунного ответа на различную вирусную нагрузку и в зависимости от функционального состояния организма пациента; проведена верификация разработанной модели к опубликованным и оригинальным экспериментальным данным; предсказаны потенциальные мишени в комплексной системе молекулярно-генетических взаимодействий вирус-хозяин для создания соответствующих наиболее эффективных лекарственных препаратов для лечения COVID-19.

Научный руководитель: Илья Ринатович Акбердин – кандидат биологических наук, старший научный сотрудник Научно-технологического университета «Сириус», направление «Вычислительная биология» Научного центра информационных технологий и искусственного интеллекта.

12) «Разработка и анализ потоковых моделей метаболизма животных, птиц и рыб для оптимизации процессов роста мышечной массы»

Одной из бурно развивающихся областей современной биологии, в которой развитие опережающих технологий наиболее вероятно и востребовано, является синтетическая биология – создание новых про- и эукариотических организмов с заданными свойствами на основе синтеза геномов de novo или их глубокой реорганизации с использованием подходов генной инженерии, биоинженерии, системной биологии и биоинформатики. Поскольку формирование любого фенотипического признака живых организмов обеспечивается комплексными молекулярно-генетическими процессами, требующими координированного взаимодействия сотен и даже тысяч генов, белков, микроРНК, то системно-биологический подход, включающий интеграцию омиксных данных, детальный анализ генных взаимодействий с последующими реконструкцией регуляторной сети и построением соответствующей математической модели, является многообещающим подходом к созданию рациональной стратегии для улучшения биотехнологических или целевых свойств исследуемых культур клеток и даже целых организмов. Использование методов и подходов системной биологии позволяет также предсказывать роль различных модификаций геномов на фенотипические признаки и их влияние на метаболизм клетки. В этом направлении развития системной биологии создание метаболических сетей на основе целого генома (GENRE, GEnome-scale Network REconstruction) является наиболее перспективным. В рамках диссертационной работы будет освоена технология получения биологически значимых результатов с помощью интеграции биоинформатического анализа полногеномных данных для живых систем с последующей реконструкцией либо потоковой модели, позволяющей исследовать метаболизм клетки на уровне всего генома, либо кинетической модели, предоставляющей компьютерную платформу для проведения in silico количественных экспериментов по генетическим модификациям и метаболическому инжинирингу эукариотических организмов.

Научный руководитель: Илья Ринатович Акбердин – кандидат биологических наук, старший научный сотрудник Научно-технологического университета «Сириус», направление «Вычислительная биология» Научного центра информационных технологий и искусственного интеллекта.

13) «Разработка сценариев и анализ генетических данных»

Современные технологии секвенирования (NGS) генерируют большие объемы разнообразных экспериментальных данных, которые требуют сложного биоинформатического анализа. Возможно несколько направлений работы, в зависимости от получаемых NGS данных в ходе сотрудничества в разных проектах: построение атласов промотров и энхансеров, а также моделей регуляции генов; разработка методов и сценариев анализа для одномолекулярного секвенирования ДНК; разработка сценариев анализа данных для Национальной базы генетической информации.

Научный руководитель: Федор Анатольевич Колпаков – кандидат биологических наук, старший научный сотрудник Научно-технологического университета «Сириус», направление «Вычислительная биология» Научного центра информационных технологий и искусственного интеллекта.

14) «Построение модели виртуальной клетки в норме и патологии»

Используя платформу BioUML (biouml.org) разработаны отдельные модули, связанные с регуляцией метаболизма и работой клетки (гликолиз, цикл Кребса, апоптоз и т.п.). Необходимо будет разработать новые модули, чтобы в конечном итоге, приблизиться к полной модели работы клетки.

Научный руководитель: Федор Анатольевич Колпаков – кандидат биологических наук, старший научный сотрудник Научно-технологического университета «Сириус», направление «Вычислительная биология» Научного центра информационных технологий и искусственного интеллекта.

15) «Моделирование фармакокинетики наночастиц в раковых опухолях»

Наночастицы рассматриваются как эффективный способ доставки лекарственных препаратов к раковым клеткам. В ходе работы необходимо будет построить модели распределения наночастиц по организму и раковым опухолям. В ходе работы будут использоваться экспериментальные данные, полученные в Университете Сириус.

Научный руководитель: Федор Анатольевич Колпаков – кандидат биологических наук, старший научный сотрудник Научно-технологического университета «Сириус», направление «Вычислительная биология» Научного центра информационных технологий и искусственного интеллекта.

16) «Моделирование влияния генетических вариантов на регуляцию артериального давления»

В настоящее время известно большое количество генов, ответственных за развитие артериальной гипертензии. Тем не менее эти знания никак не используются практикующими врачами для выбора терапии в силу сложного полигенного взаимодействия. В следствие этого необходимо развитие разработанной ранее математической модели сердечно-сосудистой и почечной систем человека с целью учета генетических механизмов артериальной гипертензии.

Научный руководитель: Елена Олеговна Кутумова – кандидат физико-математических наук, старший научный сотрудник Научно-технологического университета «Сириус», направление «Вычислительная биология» Научного центра информационных технологий и искусственного интеллекта.

17) «Моделирование возрастных изменений в регуляции артериального давления»

Предметом исследования в данной теме являются процессы общего и сосудистого старения, а также влияние изменений, связанных со старением клеток, на прогрессирование артериальной гипертензии. Для математического моделирования указанных процессов будет задействована созданная в предыдущих проектах математическая модель сердечно-сосудистой и почечной систем человека.

Научный руководитель: Елена Олеговна Кутумова – кандидат физико-математических наук, старший научный сотрудник Научно-технологического университета «Сириус», направление «Вычислительная биология» Научного центра информационных технологий и искусственного интеллекта.

18) «Моделирование действия антигипертензивных препаратов»

Артериальная гипертензия является многофакторным заболеванием со сложными патофизиологическими путями. Индивидуальные особенности пациентов обусловливают разную реакцию на разные классы антигипертензивных препаратов. Поэтому оценка эффективности терапии на основе прогнозов in silico является важной задачей. В текущей работе предполагается развитие ранее созданной математической модели сердечно-сосудистой и почечной систем человека (https://gitlab.sirius-web.org/virtual-patient/blood-pressure-regulation) с учетом уравнений, имитирующих ответ пациента на антигипертензивную терапию с различными механизмами действия, а также проведение in silico клинических исследований для данной терапии.

Научный руководитель: Елена Олеговна Кутумова – кандидат физико-математических наук, старший научный сотрудник Научно-технологического университета «Сириус», направление «Вычислительная биология» Научного центра информационных технологий и искусственного интеллекта.

19) «Моделирование и калибровка кинематической и динамической моделей индустриального робота манипулятора»

Проект направлен на разработку алгоритмов моделирования кинематики и динамики робототехнических систем и разработку протоколов по организации экспериментов и методов обработки данных для идентификации и калибровки параметров таких моделей. Особенностью проекта является исследование подходов для моделирования и калибровки динамической модели робота не в целом, а лишь в окрестности выделенного движения системы, с последующей разработкой алгоритмов управления движением системы, используя такую улучшенную модель. Предполагается использование результатов исследования и их апробация для разработки элементов новых технологии управления движением индустриального робота манипулятора повышенной точности.

Научный руководитель: Леонид Борисович Фрейдович – PhD, кандидат физико-математических наук, доцент в университете г. Умео (Umea University, Швеция), профессор Научно-технологического университета «Сириус», направление «Математическая робототехника» Научного центра информационных технологий и искусственного интеллекта.

20) «Разработка методов анализа и управления движением механической системы (робота) с учетом сил, возникающих в контакте инструмента робота с внешней средой»

Проект направлен на разработку алгоритмов управления движением робота с учетом наличия сил, возникающих в контакте между инструментом робота и внешней средой или объектом манипулирования. Наличие контакта и сил взаимодействия в контакте в большинстве приложений являются частью сценария работы робототехнической системы и не могут быть проигнорированы. По этой причине, проект предполагает исследование задач моделирования указанных сил, возникающих при наличии распределенного контакта (пятна контакта), и использование указанных моделей при синтезе стабилизирующей обратной связи. Предполагается использование результатов исследования и их апробация для разработки элементов новых технологии управления движением индустриального робота манипулятора в задачах механообработки и при выполнении сборочных работ.

Научный руководитель: Антон Станиславович Ширяев – PhD, руководитель направления «Математическая робототехника и искусственный интеллект» Научно-технологического университета «Сириус» Научного центра информационных технологий и искусственного интеллекта.

21) «Разработка методов робастного управления движением механической системы при помощи алгоритмов теории скользящих режимов»

Проект направлен на разработку алгоритмов робастного управления движением робототехнической системы, основанные на методах теории скользящих режимов высших порядков. Предполагается, что теоретическая часть будет направлена в том числе на поиск и конструирование по номинальному вынужденному движению инвариантных многообразий низкой размерности (поверхностей скольжения), стабилизация которых влечет орбитальную устойчивость движения. Предполагается использование результатов исследования и их апробация для разработки элементов новых технологии управления движением индустриального робота манипулятора в задачах механообработки и при выполнении сборочных работ.

Научный руководитель: Леонид Моисеевич Фридман – доктор физико-математических наук, профессор направления «Математическая робототехника и искусственный интеллект» Научно-технологического университета «Сириус» Научного центра информационных технологий и искусственного интеллекта.

22) «Разработка численных методов и алгоритмов искусственного интеллекта для решения задач динамического манипулирования»

Проект направлен на разработку алгоритмов планирования и робастного управления движением робототехнической системы при наличии неудерживающего контакта, который возникает, например, при проскальзывании или перекатывании объекта по руке/инструмента робота. Предполагается, что будут предложены новые планировщики движения и библиотеки движений при решении конкретных задач динамического манипулирования. Предполагается использование результатов исследования и их апробация для разработки элементов новых технологии управления движением индустриального робота манипулятора в задачах механообработки и при выполнении сборочных работ.

Научный руководитель: Сергей Владимирович Гусев – кандидат физико-математических наук, профессор направления «Математическая робототехника» Научно-технологического университета «Сириус» Научного центра информационных технологий и искусственного интеллекта.

23) «Численно-аналитические методы решения многомерных задач финансовой математики»

Решается задача создания программного комплекса, реализующего численно-аналитические методы (включая сеточные методы решения параболических уравнений в частных производных, методы расщепления дифференциальных операторов, методы операторных преобразований, асимптотические методы) для решения задач ценообразования и вычисления рисков опционов в рамках многомерных стохастических моделей. Программный комплекс должен автоматически определять стратегию решения и выбор граничных условий, чтобы минимизировать время решения на современных параллельных процессорах. Создаваемый программный комплекс предназначен для применения опционными десками российских инвестиционных банков с целью получения конкурентных преимуществ на рынках финансового капитала.

Научный руководитель: Леонид Альбертович Меркин – профессор, PhD по специальности математика Делфтского технического университета (Нидерланды), руководитель направления «Финансовая математика и финансовые технологии» Научно-технологического университета «Сириус» Научного центра информационных технологий и искусственного интеллекта.

24) «Задачи и методы оптимального стохастического управления в финансовой математике»

Решается задача оптимального стохастического управления рисками портфелей опционов в условиях воздействия множественных риск-факторов. Задача формулируется в виде нелинейного уравнения в частных производных (уравнение Гамильтона-Якоби-Беллмана), которое сводится к решению некоторой вероятностной задачи, для которой, в свою очередь, применяются эффективные современные методы машинного обучения. Решение реализуется в виде программного комплекса, предназначенного для эффективного управления опционными портфелями в российских инвестиционных банках.

Научный руководитель: Яна Исаевна Белопольская – кандидат физико-математических наук, профессор направления «Финансовая математика и финансовые технологии» Научно-технологического университета «Сириус» Научного центра информационных технологий и искусственного интеллекта.

25) «Математическое моделирование воздействия изменений климата на экономику ДФО»

Решается задача предсказания воздействий долговременных изменений климата (включая изменения средних и экстремальных значений температур и осадков) на экономику региона Российской Федерации. Метод решения состоит в интеграции моделей экономического роста, основанных на стохастических дифференциальных уравнениях межотраслевого баланса, с моделями изменения климата. Модель реализуется в виде программного комплекса, предназначенного для принятия оптимальных управленческих решений в условиях изменений климата.

Научный руководитель: Леонид Альбертович Меркин – профессор, PhD по специальности математика Делфтского технического университета (Нидерланды), руководитель направления «Финансовая математика и финансовые технологии» Научно-технологического университета «Сириус» Научного центра информационных технологий и искусственного интеллекта.

26) «Формальная верификация стратегий и платформ алгоритмической торговли финансовыми инструментами»

Платформы и стратегии высокочастотной алгоритмической торговли представляют собой распределенное программное обеспечение, работающее в реальном масштабе времени, к которому предъявляются критические требования по надежности. Эти требования могут в полной мере быть удовлетворены только посредством формальных методов дизайна и верификации ПО. Решается задача формальной верификации ранее разработанной платформы высокочастотной алгоритмической торговли MAQUETTE и стратегий на ее основе, с помощью формального метода B.

Научный руководитель: Леонид Альбертович Меркин – профессор, PhD по специальности математика Делфтского технического университета (Нидерланды), руководитель направления «Финансовая математика и финансовые технологии» Научно-технологического университета «Сириус» Научного центра информационных технологий и искусственного интеллекта.

  • ico_arrow
  • ico_arrow